Recent improvements in POLDER-2 Ocean Color processing

J.M. Nicolas¹, P.Y.Deschamps¹, C. Moulin², H. Loisel¹, O. Rasson¹, F. Thieuleux¹

¹ Laboratoire d'Optique Atmosphérique, USTL, 59655 Villeneuve d'Ascq, France ² LSCE, CEA-CNRS, 91191 Gif-sur-Yvette, France

POLDER instrument

- ✔ Platform :
 - ⇒ POLDER on ADEOS (nov. 1996-june 1997)
 - ⇒ POLDER-2 on ADEOS-2 (scheduled to launch : nov. 2002)
- **✔** CCD matrix of 242 x 274 pixels
- ✓ resolution: 6 x 7 km2 at nadir, swath: 2200 km
- **⋄** 9 bands including 3 polarized bands
- **✓** Radiometry :

Bands	443(P)	443	490	565	670 (P)	763	765	865 (P)	910
Band width (nm)	20	20	20	20	20	10	40	40	20
NEDR (x 10^{-3})	0.25	0.44	0.14	0.20	0.42	0.57	0.42	0.42	0.52

- Mission scientific objectives
 - **⇒** Atmosphere : Aerosol, Earth radiation budget and clouds
 - **⇒** biosphere : Land surfaces, *Ocean Color*

POLDER-1 algorithm

✓ Atmospheric correction algorithm includes the following features:

• Clouds masking based on 865 nm radiance :

threshold and

local (neighbours) variations

Gaseous absorption correction

 O_3 using $\hat{T}OMS$ data, H_2O using 910 nm channel, O_2 using 763 narrow band

- Rejection of directions contaminated by sun glint
- Correction of sun glint for slightly contaminated directions based on isotropic Cox & Munk model (1954)
- Accurate molecular scattering correction, including multiple scatterings and polarization.
- Inversion of aerosols characteristics using NIR bands (865, 765, 670 nm)
- Correction of aerosols contributions using 12 Shettle and Fenn models

✓ Bio-optical algorithm

- The directional marine reflectance (all directions) is normalized using the Q factor from Morel and Gentili (1993), for nadir viewing and for solar zenith angle = 0°
 - OC2 (O'Reilly et al., 1998) chlorophyll inversion algorithm

POLDER-2 improvements: Correction of absorption by aerosols (1)

✓ Method

- New approach based on multi-directionality
- Relies on the change of absorption efficacy with molecular scattering and air mass

✓ Modelisation

• Look-Up Tables are computed using a Successive Order of Scattering code (Deuzé, 1989) :

$$\Delta \rho_{abs}(\theta_s, \, \theta_v, \, \phi) = \rho_{aer}(\theta_s, \, \theta_v, \, \phi) - \rho_{aer}(\theta_s, \, \theta_v, \, \phi)(\omega_0 = 1)$$

 $\rho_{aer}(\theta_s, \theta_v, \phi)$ is the aerosol model reflectance

 $\rho_{aer}\left(\theta_{s},\,\theta_{v},\,\varphi\right)(\omega_{0}{=}1)$ is the aerosol model reflectance without absorption

POLDER-2 improvements: Correction of absorption by aerosols (2)

✓ Application to POLDER data : correction of a plume of desert aerosols over eastern Mediterranean (may 12, 1997, orbit n° 7378)

- Standard atmospheric correction is carried on (without absorption)
- When the slope is negative, the correction of absorption is activated
- Abnormally low reflectance (over-correction) are adjusted

POLDER-2 improvements: Correction of absorption by aerosols (3)

✓ Preliminary validation using SIMBAD in-situ measurements during AMT-4

- 1 in-situ measurement (may 13, 1997) off Africa under a desert aerosol plume
- We look at clear POLDER pixels in the 4 days before or after
- Sun glint filter has been relaxed to increase the number of available directions
- Good agreement, except for may 15, $(\tau_{a865}=0.74 \text{ that day})$

POLDER-2 improvements: Correction of absorption by aerosols (4)

✓ Comparison with TOMS / ADEOS Aerosol Index

POLDER-2 improvements: "Black pixel assumption" (1)

✓ The problem :

- Waters are assumed black at 670, 765 and 865 nm for aerosols inversion
- That assumption is not verified for case-2 waters or case-1, eutrophic waters
 - \Rightarrow Angström coefficient is over-estimated
 - ⇒ Ocean Color bands are over-corrected

✓ The solution :

- Using an empirical relation between ρ_{w670} and ρ_{w565} in an *non-iterative* algorithm (Viollier, 1980, Deschamps et Viollier, 1987)
 - That relation can be observed using *in-situ* data
 - The approach is tested on SeaWiFS HRPT (HDUN) data

POLDER-2 improvements: "Black pixel assumption" (2)

✓ Application to SeaWiFS data in the Channel (using POLDER algorithm) :

- HRPT SeaWiFS data (from HDUN, Dundee station) at 1x1 km²
- April 1, 1999
- POLDER atmospheric correction algorithm is applied to SeaWiFS L1.

POLDER-2 improvements: "Black pixel assumption" (3)

✓ Validation using in-situ SIMBAD measurement

• in-situ : SIMBAD measurements made in the Channel between Calais (France) and Dover (England) from a Ferry-boat

- The new approach clearly improve the atmospheric correction
- Comparison between POLDER algorithm (based on 865/670 bands) and SeaWiFS algorithm (based on 865/765 bands + Siegel iteration) shows quite good agreement

POLDER-2 improvements: bio-optical parameters

✓ New Inherent Optical Properties (IOP) parameters in standard L2 & 3 products

- Marine absorption coefficient (at 443 and 490 nm)
- back-scattering coefficient (at 565 nm)
- Use of a model from Loisel et al. (1998)
- Example: POLDER, april 10, 1997

✓ Two parameters related to chlorophyll-*a* concentration :

- one from OC2 or OC3-v4 algorithm (O'Reilly et al, 1998)
- one from Normalized Different Pigment Index (NDPI, Frouin et al, 1996)

POLDER-2 Ocean Color standard products (1)

✓ Level 2 products :

• OC2A : Directional product

Directional marine reflectances (over the surface) at 443, 490, 565, 670 nm AOT at 865 nm Angström coefficient aerosol absorbing index (new)
Rayleigh corrected normalized radiance at 865

• OC2B : Non-directional product

Diffuse marine reflectances (under the surface) at 443, 490, 565, 670 nm AOT at 865 nm
Angström coefficient aerosol absorbing index (new)
Chlorophyll-a
Water absorption coefficient at 443, 490 nm (new)
Water backscattering coefficient at 565 nm (new)

POLDER-2 Ocean Color standard products (2)

✓ Level 3 products ("binned products"):

- geo-coded on a sinusoidal grid, 6480x3240
- ten-days and monthly mean for all the L2 parameters
- Quality index, standard-deviation

✓ Reformatted products ("mapped product") (new)

- HDF-EOS format
- geo-coded on a cylindrical grid, 4320x2160 (12 pixels / °)
- ten-days and monthly mean for marine reflectances, chlorophyll-a, AOT, angström coefficient, water absorption coefficient at 443 nm and water backscaterring coefficient at 565 nm
 - Daily synthesis for chlorophyll-a

POLDER-2 improvements: conclusions

- **✓ POLDER-2** new algorithms still in progress
- → Reprocessing of POLDER-1 data with the new algorithm scheduled in 2002
- ✓ POLDER-2 / ADEOS-II : launch scheduled in november 2002
 - first POLDER-2 Ocean Color data (preliminary) in 2003
 - Validated POLDER-2 data in 2004
- **✓** General information / news on POLDER :

http://www-projet.cst.cnes.fr:8060/POLDER/index.html

→ POLDER Ocean Color data:

http://www-projet.cst.cnes.fr:8060/POLDER/SCIEPROD/oc9611.htm